A Brief History of Aircraft Carburetors and Fuel Systems
Part 8: Bendix-Stromberg Pressure Carburetors

by Terry Welshans
Bardstown, Kentucky
for the Aircraft Engine Historical Society
Published Aug 2013; Revised 20 Mar 2018

Table of Contents


The Bendix-Stromberg pressure carburetor is a more or less conventional carburetor design in most respects, in that all of the air and fuel control systems are present, but in a modified form. The fuel within the carburetor is always under pressure from its entry into the fuel regulator until sprayed into the airflow past the throttle or into the eye of the supercharger. Like the float-type carburetor, this carburetor is available in downdraft and updraft designs. There is a small horizontal model available for engines requiring this design, which mount vertically in small helicopters.


The primary differences from float type carburetors are:


Connected to this airflow sensor diaphragm is a fuel pressure regulator diaphragm that holds a constant fuel pressure in the fuel discharge piping, the flow rate being determined by the position of the air sensor diaphragm.

The throttle is located in the air stream after the air has passed through the venturi. It was possible to discharge the fuel at any location beyond the throttle, thus greatly diminishing the throttle icing. The carburetor has one or more fixed venturis, thereby avoiding compressibility difficulties experienced in the Chandler-Groves carburetor when the variable-venturi throttle was in cruise power at high altitude.

Wright Aeronautical received a prototype of the new Stromberg floatless carburetor setup for the Cyclone 9 engine, and engineers immediately began to work as intensively on its development as they had on Chandler-Groves carburetor development. Sometime later a prototype for a Pratt & Whitney Twin-Wasp engine was ready. Pratt & Whitney had disliked the Chandler-Groves design and had provided only minimal assistance with its development. P & W approved the new Stromberg design, and like Wright, did a great deal of work toward its development. The new Stromberg floatless carburetor was in production in 1938, and was an immediate success. Like the Chandler-Groves carburetor, it was free from float problems, and was much less prone to icing than the float-type carburetor. The Stromberg automatic mixture control was sound in principle, and although it was not working perfectly in 1938, by 1940 it was completely satisfactory.

Pratt & Whitney adopted the Stromberg floatless carburetor for all of its high-power engines. It also was used by the Army on all the Wright G-200 Cyclones that powered Boeing's B-17. Pratt & Whitney later developed a system where fuel sprayed into the supercharger inlet instead of immediately after the carburetor, and with that change, fuel refrigeration icing problem no longer existed.


Design and Development

The new Bendix floatless carburetor design replaced the float-operated fuel inlet valve with a servo-operated poppet-style fuel-metering valve. There are either one or two small vent floats in the fuel regulator air bleed system. These floats have nothing to do with the air-fuel ratio, as their only purpose is to allow any air trapped in the fuel regulator to return to the fuel tank where it vents to the atmosphere.


The Bendix-Stromberg floatless carburetor consists of three major portions:


Throttle Body

The throttle body is the main portion of the carburetor. It contains one or more bores through which all of the air flows into the engine. Each bore contains one or two throttle plates to control airflow into the engine. Downdraft carburetors are used on R-1300, V-1710, R-1820, R-1830, R-2000, R-2600, R-2800, R-3350 and R-4360 engines. Other Bendix Stromberg carburetors are updraft designs used on V-1650 engines.

All remaining main portions attach to the throttle body, where they interconnect with internal passages or external tubes or hoses. The boost bar portion measures air density, barometric pressure, and the amount of air flowing through the carburetor. Bendix-Stromberg carburetors use a double or boost type venturi developed and patented for automobile carburetors. Obtaining the vacuum used by the fuel flow control valve from a smaller boost venturi resulted in a reduction of air pressure losses. This portion mounts in the airflow at the carburetor inlet. The automatic mixture control, if used, is mounted either on the boost portion for a throttle body with two or more throats, or on the throttle body itself for single throat models. The throttle body may have an adaptor bolted to the carburetor base that changes airflow direction. This adaptor may have the fuel discharge nozzle and accelerator pump attached to it. Small aircraft engines can be equipped with a single throat pressure carburetor. This carburetor throttle body contains all of the other components listed above.


Fuel Control

The pilot operates the fuel control to adjust fuel flow into the engine. The fuel control contains a number of jets that control internal fuel pressures. The idle valve and its operating lever and adjustable linkage are visible at the lower part of Figure 86.



Fuel Regulator

This is the "brain" of the carburetor. Movement of a diaphragm that measures engine mass airflow adjusts the position of the fuel-metering valve accordingly, and controls the fuel flow rate. The poppet-type metering valve is located under the round cover retained by six studs and nuts (Fig. 88).



Four main chambers comprise the Bendix-Stromberg fuel regulator. The air diaphragm separates the "A" and "B" chambers, which are closest to the throttle body. Chamber "A" contains the pressure from the impact tubes. Chamber "B" contains the suction from the boost venturi. The difference in pressure between the two air chambers creates the air metering force. The fuel-metering diaphragm separates the "C" and "D" chambers, which are located outboard on the same valve stem as the air-metering diaphragm. Chamber "C" contains "metered fuel" (fuel that has already passed through the jets, but not yet injected into the air stream); chamber "D" contains "unmetered fuel" (the fuel as it enters the carburetor). A fuel pressure drop results as the fuel flows through the jets and into chamber "C". The reduced pressure in chamber "C", on one side of the fuel diaphragm, and unmetered fuel at fuel pump pressure in chamber "D", on the other side of the diaphragm, create the fuel metering force.

The fuel-metering valve is located at the outboard end of the valve stem, and responds to the total pressure differential across the air and fuel diaphragms. The resulting valve stem movement controls fuel flow into the engine under all flight conditions by slightly opening or closing the fuel-metering valve as necessary.



The regulator is a diaphragm-controlled unit divided into four primary chambers. Two regulating diaphragms separate the primary chambers from one another. Secondary balancing diaphragms compensate for differences in diaphragm areas caused by the valve stem and the poppet valve assembly. Chamber "A"contains regulated air scoop pressure; chamber "B" contains boost venturi pressure; chamber "C" contains regulated fuel pressure; chamber "D" contains unregulated fuel pressure. Refer to Figure 90 , and assume that for a given airflow (measured in in pounds per hour through the throttle body and venturi), a negative pressure of 0.25 psi is established in chamber "B". This tends to move the diaphragm assembly and the poppet valve in a direction to open the poppet valve, permitting more fuel to enter chamber "D", while the pressure in chamber "C" is held constant at 5 psi (10 psi on some installations) by the spring-loaded discharge nozzle or impeller fuel feed valve. Hence, the diaphragm assembly and poppet valve will move in the open direction until the pressure in chamber "D" is 5.25 psi. Under these pressures, there is a balanced condition of the diaphragm assembly with a pressure drop of 0.25 psi across the jets in the fuel control unit. In the event the nozzle pressure (chamber "C" pressure) rises to 5.5 psi, the diaphragm assembly balance will be upset and the diaphragm assembly will move to open the poppet valve so as to establish the necessary 0.25-psi pressure in chamber "D" and, thus, re-establish the 0.25-psi differential between chamber "C" and chamber "D". Hence, the drop across the metering jets will remain the same.

If the fuel inlet pressure is increased or decreased, the fuel flow into chamber "D" will tend to increase or decrease with the pressure change, causing the chamber "D" pressure to do likewise. This cycle will again upset the balanced condition previously established, and the poppet valve and diaphragm assembly will respond by moving to increase or decrease the flow to re-establish the same pressure differential established between chambers "C" and "D" as the 0.25-psi differential established between chambers "A" and "B".

Fuel flow changes when the mixture control plates move from the auto-lean to auto-rich or vice versa, thereby selecting a different set of jets or cutting one or two in or out of the system. A mixture position change causes the diaphragm and poppet valve assembly to reposition, maintaining the established pressure differential of 0.25 psi between chamber "C" and "D", maintaining the established differential across the jets.

Under low-power settings (low airflow), the difference in pressure created by the boost venturi is not sufficient to accomplish consistent regulation of the fuel. Hence, an idle spring is located in chamber D (Fig. 90). The poppet valve moves toward the closed position until it contacts the idle spring. The spring holds the poppet valve off its seat far enough to provide more fuel than is needed for idling. This potentially over-rich mixture is regulated by the idle valve. At idling speed, the idle valve restricts the flow to the proper amount, but at higher speeds, it is withdrawn from the fuel passage and has no metering effect.

The fuel delivery nozzle is either remotely mounted at the "eye" of the engine's supercharger or in the carburetor adapter after the carburetor body. The fuel sprays into the air stream as it enters the engine through one or more spring-controlled spray valves. The spray valves open or close as the fuel flow changes, holding a constant fuel delivery pressure.

An accelerator pump injects a measured amount of extra fuel into the air stream to allow smooth engine acceleration, and is either remotely mounted or mounts on the carburetor body. The accelerator pump is either mechanically connected to the throttle, or it is operated by sensing the manifold pressure change when the throttle is opened.

Some carburetors may have an optional anti-detonation injection (ADI) system. This carburetor modification consists of a "derichment valve" located in the fuel control, a storage tank for the ADI fluid, a pump, a regulator that provides a specific amount of ADI fluid based on the fuel flow, and a spray nozzle that is mounted in the air stream entering the supercharger.


Bendix-Stromberg produced a number of floatless carburetor styles and sizes, each calibrated to a specific engine and airframe. Each carburetor model number includes the style, size and a specific model letter,sometimes followed by a revision number. Each application (the specific engine and airframe combination) then receives a "list number" that contains a list of the specific parts and flow sheet for that application. There are hundreds of parts list and flow sheets in the master catalog. Bendix used a special method to identify round carburetor bores as found in the PS, PD and PT models. The first inch of bore diameter is the base number one, and each 0.25" increase in diameter adds one to the base number.

  1. A 1.25" bore would be coded as a size number 2 (the base number 1 plus 1 for the additional 0.25" over one inch)
  2. A 1.50" bore would be coded as a size number 3 (the base number 1 plus 2 for the two 0.25" increments over one inch), and so on up to a size 18 (the base number 1 plus 17 for the seventeen 0.25" increments over the one inch base).


The actual finished bore size is 3/16 inch larger than the coded size.

Using the size number 18 bore as an example, we calculate the actual bore size as follows:


There are four basic carburetor models:






Specific Bendix Stromberg Injection Carburetor Applications
PS-5BContinental E-165, E-185 
PM-8A1Ranger V-770-D1 
PM-8A2Ranger V-770-D4 
PM-8A3Ranger V-770-D1 
QM-8A1Ranger V-770-D4 
QM-8A2Ranger V-770-D1 
PD-9C1R-1535-94, -96 
PD-9C2R-1535-94, -96 
PD-9D1R-1535-2, -92, -96Chance Vought SBU-3, SB2U-1, -2, -3
R-1340-36Curtiss SOC-4, North American SNJ-2, -3
R-1300-1A, -1B, -2A, -4A North American T-28A, PG-1, -2, -2W
R-1300-957C7RA1, -C7BA, -2, -2A, -2B 
PD-9G1R-1300-3Sikorski HRS-3, HO4S-3, H-19B, D, UH-19
R-1300-3, -3A, -3B Sikorski HRS-3, HO4S-3, H-19B, D, UH-19
R-1300-3, -3C, -3D Sikorski HRS-3, HO4S-3, H-19B
R-1300-990C7BA1, R-1820-76A, -76BSikorski S-55
QD-9A1Ranger V-770-C1 
QD-9A2Ranger V-770-6, -8, -11Curtiss SO3C-3
P & W R-1340-AN-1 
QD-9A3Continental R-975-9A, -34 
QD-9A4Continental R-97S-34 
Continental R-975-34, -42, -46 Piasecki HUP-1, -2, -3, H-25A
QD-9B1Ranger V-770-C1B-11 
QD-9ClContinental R-975-9A 
QD-9D1Continental R-975-34, -42, -46, -46A 
QS-9A1Menasco D6F-G 
AS-12A1R-1340 Piasecki HUP-2, -3, H-25A
PD-12B4V-1710-21 (C10)Curtiss YP-37, P-37
V-1710-23 (D2) Bell YFM-1, FM-1, -1A
R-2180-5, -7Stearman XA-21
V-1710-21 (C10)Curtiss YP-37, P-37
V-1710-23 (D2) Bell YFM-1, FM-1, -1A
R-1830-21Douglas C-41
R-1830-S1CG, -SCGDouglas DC-3, C-41
PD-12B7R-1820-G10, -G102 
R-1820-G102A, -79, -81, -83Douglas C-50B, C, D, C-51, Lockheed Hudson I, II
R-1820-G200, -G202A, -G205B, -71, -91Douglas C-49A, B, C, D
PD-12B8R-1830-SC3GDouglas DC-3
R-1830-S1C3GDouglas C-48B, C
R-1830-SC3G, -45Douglas DC-3, Curtiss P-36
R-1830-SC3GDouglas DC-3, Republic P-43
R-1830-49Lockheed A-28, Republic RP-43A, B, C
PD-12B8ER-1830-S1C3GDouglas C-48B, C
PD-12E1R-1830-76Grumman XF4F-3, -4, F4F-3
R-1830-76, -78, -88Consolidated PB2Y-2, -3, Grumman XF4F-3, -4, F4F-3
PD-12E2R-1830-76, -86Grumman F4F-3, -4, -7, Eastern FM-1
PD-12E3R-1830-76, -78, -88Consolidated PB2Y-2, -3, Grumman XF4F-3, -4, F4F-3
PD-12E4R-1830-76, -86Grumman F4F-3, Eastern FM-1
PD-12F2R-1830-C4, -C5 
R-1830-43Consolidated B-24D, E, H, B-25C
R-1830-S3C4GDouglas DC-3C
R-1830-33, -41, -43, -57 Consolidated XB-24, RB-24, B-24A, B, C, D, E, PB3Y-3, Martin RB-10B, Lockheed A-28A
R-1830-S4C4GDouglas DC-3C, Lockheed 18-14
R-1830-67Douglas C-47, C-48, C-52, Lockheed PBO-1, RA-28A, C-57
R-1830-S3C4GDouglas DC-3C
R-1830-90Grumman F4F-3A, -4A, -6, G-36B
R-1830-43,-47Consolidated B-24, Republic P-34D
R-1830-S1C3G, -S3C4G Douglas DC-3C, C-48, C-52, Lockheed C-57
R-1830-41, -43, -55Consolidated B-24
R-1830-90BDouglas C-47B, Bristol Beaufort II
PD-12F3R-2000-D, -DG-1, -3 
R-2000-1, -3, -7Douglas C-54A, B, C, F
PD-12F5 R-1830-90B, -90C, -90D Douglas DC-3, C-47B, D, C-117B, R4D-6, -7
R-1830-41, -43, -45, -55 Consolidated RB-24C, B-24B, C, D, E, PB4Y-1
R-1830-67Douglas C-47, C-48, C-52, Lockheed PBO-1, RA-28A, C-57
Jacobs XR-1530 
R-1830-90B, -90C, -90D Douglas C-47B, C-47D; C-117B; R4D-6, -7; DC-3D
R-1830-43Douglas DC-3C
PD-12F6R-2000-1, -3, -7Douglas C-54A,B,C,F, DC-4
PD-12F7 R-2000-3, -7 Douglas C-54A, R5D-1, DC-4
R-1830-94 Consolidated P4Y-2, Douglas DC-3
R-1830-94, R-2000-3, -7, -11, -7M2, -DS5 Douglas DC-4, C-54, de Havilland DHC-4, CV-2B
R-2000-5, R-1830-75, R-2000-11 
PD-12F8R-1830-75Douglas DC-3, Ford XB-24N, B-24N, XB-24K
R-1830-98Consolidated P4Y-2
R-2000-D1G, -D13G, R-2000-9,-13 
R-2000-9, -13, -2SD1G, -2SD13GDouglas C-54, R5D
PD-12F13R-2000-4, -9, -13Douglas R5D-2, -3, -4R, -5, -5R
R-2000-4, -9, -11, -7M2, -13Douglas C-54, C-47, de Havilland DHC-4, C-7A, CV-2B
R-2000-2SD1G, -2SD13GDouglas DC-4
R-1830-75Douglas DC-3, Lockheed C-57
PD-12G1V-1710-27 (F2R), -29 (F2L), -49 (F5R), -53 (F5L), V-1710 -35 (E4), -37 (E5)Lockheed YP-38, P-38D, E, F, F-1, F-5, F-10
PD-12H1R-1830 (S1C3-G) 
R-1830-66Consolidated PBY-3
R-1830-72Consolidated XPB2Y-1, XPBY-5A, PBY-4
R-1830-82Consolidated PBY-5,-5A, Douglas R4D-1
R-1830-84ALockheed R5O-3,
R-1830-92 Boeing PB2B-1,-2, Budd RB-1, Curtiss YC-76A, Lockheed C-54D, Consolidated PB2Y-3, -3R, -5, -5R, -5H, -5Z, PBY-5, -5A, -5B, Consolidated PBY-6, -6A, OA-10, NAS PBN-1, Sikorski JR2S-1, Douglas C-47A, C, R4D-1, -3, -4, -5, C-48A, C-53A, B, C, D, C-68, DC-3C, Vickers PBV-1A, OA-10A
R-1830-66, -82Consolidated PBY-3, -5, -5A, Douglas R4D-1
R-1830-S1C3G-53Douglas DC-3C, C-48B, C
R-1830-82,-88Consolidated PBY, Douglas C-48, C-52, Brewster OA-10
R-1830-57Republic P-43A, AT-12, Seversky P-35A
R-1820-50, -65, -73, -87, -91, -97, -G200Boeing B-17C, D, E, F, G
PD-12H3R-1820-G249, -G205B, -G202A 
R-1820-G205A, -G202A, -71, -87 Douglas C-49A, B, C, D, Boeing B-17C, D, E, F, Lockheed PBO-1
R-1820-40, -42Brewster F2A-2, -3, Lockheed R5O-4, -5
R-1820-67, -69 
R-1820-G200, -G202A, -G205A, -40, -42, -87, -93Boeing B-17C, D, E, F, Lockheed PBO-1, Hudson III
R-1820-G205A, -G105ADouglas DC-3
R-1820-G205Northrop N3PB
R-1820-G205A, -G202A, -54, -87Douglas DC-3, R4D-2, C-49, Lockheed PBO-1, R5O-6, Grumman F2F-6
R-1820-G205A, -87Douglas DC-3, C-49A, B, C, D
PD-12H4R-1830-66, C3Consolidated PBY-3
R-1830-72Consolidated XPB2Y-1, XPBY-5A, PBY-4
R-1830-82Consolidated PBY-5, -5A, Douglas R4D-1
R-1830-92Boeing PB2B-1, -2, Budd RB-1, Curtiss YC-76A, Lockheed C-54D, Consolidated PB2Y-3, -3R, -5, -5R, -5H, -5Z, PBY-5, -5A, -5B, Consolidated PBY-6, -6A, OA-10, NAS PBN-1, Sikorski JR2S-1, Douglas C-47A, C, R4D-1, -3, -4, -5, C-48A, C-53A, B, C, D, C-68, DC-3C, Vickers PBV-1A, OA10A
R-1830-90,-S1C3GDouglas DC-3
R-1830-S1C3GDouglas DC-3C, C-48B, C, C-52A, B, C, D, Lockheed C-57A, B
R-1830-66Consolidated PBY3
R-1830-92AConsolidated PBY-5A
R-1830-S1C3G-53Douglas DC-3
PD-12H5R-1820-50, -65Boeing B-17C, D, E, F
PD-12H7R-1830-C3, -66, -72 
PD-12J1R-2600-3Douglas B-23, C-67
R-2600-A, -3, -11Douglas A-20B, C, P-70
R-2600-11Douglas BD-2, A-20A, B, C, B-23, C-67, P-70
PD-12J3R-2600-11Douglas A-20C
PD-12K1R-2600-3Douglas B-23, C-67
R-2600-23Douglas A-20C, G
Continental IV-1430 
PD-12K2V-1710-35 (E4)Curtiss P-40, Bell P-39C, D, D-1, E, F, J, K, L
V-1710-37 (E5)Bell YP-39, P-39
V-1710-39 (F3R)Curtiss P-40D, E, E-1, M, N, North American P-51A, Republic XP-47
V-1710-51 (F10R)Lockheed P-38E, H, P-49; Bell P-39
V-1710-63 (E6)Bell P-39D-2-BE, K, K-1-Bell-1-BE, M
V-1710-73 (F4R)Curtiss P-40E, K, North American P-51A
V-1710-27 (F2R), -29 (F2L), -81, -99 (F26R), -115, -81, -99 (F26R)  
PD-12K3V-1710-51 (F10R)Bell P-39, Lockheed P-38E, G1, G2, H, P-49
V-1710-55 (F10L)Lockheed P-38E, G1, G2, H
V-1710-89 (F17R), - 91 (F17L) Lockheed P-38E, H
PD-12K4R-1820-56, -60Eastern FM-2, Douglas SBD-5, -6
PD-12K6V-1710-39 (F3R)Bell P-39D, N
V-1710-63 (E6)Bell P-39D-2-BE, K, K-1-BE, L, L-1-BE, H, P-76
V-1710-67 (E8)Bell P-39M, P-76
V-1710-81 (F20R)Curtiss P-40M, N, North American P-51A
V-1710-83 (E18)Bell P-39M-1-BE
V-1710-85 (E19)Bell P-39N-l-BE, P-39Q-1-BE
V-1710-99 (F26R)Curtiss P-40N
V-1710-55 (F10L)Lockheed P-38E, H
PD-12K7V-1710-55 (F10L), -89 (F17R), -91 (F17L) 
V-1710-Bell P-39
V-1710-51 (F10R)Lockheed P-38E, H, G1, G2, P-49
V-1710-55 (F10L)Lockheed P-38E, H, G1, G2
V-1710-87 (F21R)North American A-36A-l
V-1710-89 (F17R), -91 (F17L)Lockheed P-38N
V-1710-111 (F30R), -113 (F30L) Lockheed P-38L, M
V-1710-73, -89(F17R)  
PD-12K8V-1710-109 (E22), -111 (F30R), -113 (F30L) 
V-1710-115 (F31R)Bell P-63
V-1710-109 (E22), -111 (F30R), -113 (F30L)Lockheed P-38K, L, M
PD-12K9 V-1710-129 (E23)  
PD-12K10R-1820-C9HD, -93 
R-1820-56Lockheed C-56, Pac-Aero Learstar, CASA-202B
R-1820-G205A, 736C9GC 
PD-12K11 Sterling Experimental (Marine)  
PD-12K12V-1710-109(E22) , -111(F30R) 
PD-12K14R-1820-76A, -76B, -86A, -101Grumman SA-16A, UF-1, North American T-28D, HU-16B
R-1820-992C9HD1, 987C9HD1Pac-Aero Learstar
R-1820-982C9HE1, 982C9HE2Hurel Dubois HD-34, HE-321
R-1820-82WAGrumman S2F-1
R-1820-56,-74Grumman UF-1
PD-12K15V-1710-109 (E22) 
V-1710-133 (E30)Bell P-63F
PD-12K16V-1710-39 (F3R), -61, -81 (F20R) 
PD-12K17V-1710-111 (F30R), -113 (F30L) 
PD-12K18R-1820-737C9HD1, -78, -736C9HD3, -982C9HE1, -56, -74 
R-1820-80, -82, -86North American T-28B, Grumman S2F-1
R-1820-76, -76A, -76B, -101Grumman SA-16, UF-1, UF-2
R-1820-88Goodyear ZPG-3W
R-1820-977C9HD3Vertol 44B
R-1820-80, -82, -86, -88North American T-28B, Grumman S2F-1
R-1820-80, -82, -82A, -86, -88North American T-28B, S-2D, E, F
PD-12K19R-1820-103Vertol H-21, CH-21
R-1820-977C9HD1, 977C9HD2Vertol 44B
R-1820-103Vertol H-21
PD-12K20R-1820-977C9HD1, 977C9HD2Vertol 44B
PD-12P1Continental IV-1430-3 
PD-12P2Continental IV-1430-25Lockheed XP-49, McDonnell XP-67
PD-12P3Continental IV-1430 
PD-12Q1 V-1710-(E32)  
PD-12R1R-1820-84, -84A, -84B, 989C9HE1, -HE2Sikorski HSS-1, H-34, S-58
R-1820-84A, -84B, -84C, -84D, -9DSikorski HSS-1
R-1820-84A, -84B, -90 Sikorski H-34
R-1820-989C9HE1, -HE2Sikorski S-58, UH-34
PT-13B2V-1710-19Curtiss XP-40
PT-13D4R-2800-8Chance Vought F4U-1, -2, Brewster F3A-1, Goodyear FG-1
PT-13D5R-2800-8Chance Vought F4U-1
PT-13D6R-2800-8Chance Vought F4U-1
R-2800-8WChance Vought F4U-1
PT-13E1V-1710-33 (C15)Curtiss P-40B, C, G
V-1710-41 (D2A)Bell FM-1B
V-1710-33 (C15)Curtiss P-40B,C,G
PT-13E2R-2600-B, -7, -9Douglas A-20, P-70, C-47, North American B-25A, B,
Bristol Hercules 
R-2600-7, -9Douglas A-20, P-70, C-47, North American B-25A, B
R-2600-10, -16Grumman TBF-1
R-2600-9Curtiss C-46
Wright 585C14BA1, 586C14BA1 (R-2600) 
PT-13E5V-1710-47 (E9)Bell XP-39E, P-63A, P-76
V-1710-93 (E11)  
PT-13E9 V-1710-47 (E9), -93 (E11), -117 (E21), -93 P-63A, B, E
PT-13E10V-1710-93 (E11), -117 (E21) 
PT-13F1R-2800-5, -39Douglas B-23, Martin B-26A, B, C, Curtiss C-46, Lockheed B-34
R-2800-7Republic P-44
R-2800-6Chance Vought XTBU-1
R-2800-11North American B-28
R-2800-S1A4G, -5, -39 Vickers Warwick I, Douglas B-23, Martin B-26A, B, C
R-2800-21, -27Douglas A-26, Grumman F6F-4, P-47C, D, G
R-2800-25Northrop XP-61
R-2800-S1A4GVickers Warwick I
PT-13F5R-2800-27, -31, -51Lockheed PV-1, -2, RB-34
PT-13G1R-2800-A Curtiss C-46
R-2800-16Grumman XF6F-2, Chance Vought F4U-3
R-2800-21Curtiss P-47G, Republic P-47C, D, RP-47B, C, XP-47E, F, K
R-2800-27Douglas A-26B, C, B-23, JD-1, Grumman XF6F-1, XF6F-4, F7F-1N
R-2800-31Lockheed PV-1, -2A, B, C, D, -3, RB-34A, B
R-2800-41Martin B-26B-2
R-2800-43Curtiss C-46, Martin AT-23A, B, B-26B, C, D, E, F, G, TB-26H
R-2800-47Vickers Warwick II
R-2800-49Hughes XA-37
R-2800-51Curtiss R5C-1, -2, C-46A, D, E, F, G
R-2800-71Douglas A-26B, C, JD-1
R-2800-75Curtiss C-46A, D, E, F, G, XC-113
R-2800-79Douglas A-26-B, C, JD-1
R-2800-27, -31 Douglas A-26A, B, C, Grumman F7F-1, Lockheed PV-1, -2, -3, RB-34A, B
R-2800-35Republic XP-47B
R-2800-14, -16, -41 Chance Vought F4U-3, Grumman XF6F-2, Martin B-26B-2
R-2800-21, -27, -31, -63 Republic P-47B, C, D, G
R-2800-21Republic P-47C, D, RP-47B, C, XP-47E, F, K
PT-13G2R-2800-10, -29Grumman F6F-3, -5, Northrop XP-56, XP-61, P-61, Curtiss P-60
PT-13G5R-2800-21, -59, -63Republic P-47B,C, D, E, F, K, XP-47L
R-2800-27, -71, -75, -79 Douglas A-26; Curtiss C-46
PT-13G6R-2800-10W, -65Curtiss P-60, Grumman F6F-1, -3, Northrop P-61
PT-13H1 V-1710 (G1)  
PT-13H2V-1710-135Bell P-63
PD-16A1V-1650-1Curtiss P-40F, L
PD-16B1V-1650-1Curtiss P-40F, L
Merlin 28, V-1650-1Lancaster III, X
Merlin 24, 28, 29, 31, 33, 38 Hurricane, Mosquito, Lancaster, Lancasterian
Merlin 224, 225Lancaster III, X, Mosquito
PD-16B2Merlin 28 ,224Lancaster III, X
PD-16C1Merlin 61 
PD-16DlChrysler XI-2220-1, -11 
PD-16E1V-1650-1P-40F, L
PD-18AlV-1650 -3, -7North American P-51B, C, D, K, F
Merlin 68, 69Lincoln, Mosquito
PD-18A2V-1650-3, -7North American P-51B,C, D, F, K
PD-18B1Merlin 68, 69Lincoln II, Mosquito
V-1650-7North American P-51D
PD-18C1AV-1650-3, -7North American P-51D, K, TF-51D
PD-18C3A V-1650-9, -9A , -23, -25 North American P-51H, P-82B, C, D
PD-18C4V-1650-9ANorth American P-51H
PD-18D1Merlin 68, 69 
PD-18D1AMerlin 68, 69Lincoln II, Mosquito
AR-48D1R-2180-11Piasecki H-16
PR-48A1R-2600-8, -15,-20General Motors TBM-3, Grumman TBF-3, Curtiss SB2C-3, Fairchild SBF-1
PR-48A2 R-2600-15, -20  
PR-48A3R-2600-20General Motors TBM-3, PBM-1, Curtiss SB2C
PR-48A4R-2600-29A, -35, -13North American B-25
Sterling V-2500 (Marine)  
PR-48B1R-2600-14, -18Grumman F7F-1
PR-52B1Bristol Hercules 
PR-53A1P & W X-1800 (XH-2600)  
PR-58A1Wright XR-2160 Tornado, R-3350-1 
R-3350-8, -10, -12, -14Consolidated P4Y-1, Boeing PBB-l, Douglas SB2D-1, Martin PBM-4
PR-58A3R-3350 -8, -10, -12, -14 
PR-58B1V-1710-57 (F11) 
PR-58B3 V-3420-13 (A16L), -17 (A18R), -19 (B8), -23 (B10), V-3420 (B4), V-3420-23 (B10), (B11)  
V-3420-B4V-3420-23 (B10), (B11) 
PR-58B4V-3420-23 (B10) 
PR-58B5V-3420-B11, -B12 
PR-58C1Lycoming H-2470-2Vultee XP-54
PR-58C2Lycoming H-2470-1, -3, -5, -7Vultee XP-54
PR-58D1Lycoming XH-2470-2, -7 
R-2800-22, -28Grumman F7F-2, XF8F-1
R-2800-18W, -22, -28, -34, -36, -57, -61Grumman F7F-2, XF8F-1
R-2800-14W, -18W, -22W, -34WChance Vought F4U-4, AU-1, Grumman F7F, F8F-1, Martin PBM-5
R-2800-CA15Convair 110
R-2800- CA15A, -CA18, -CA18A 
R-2800-83AM4AConvair 240
R-2800-83A, -83WAChance Vought F4U-4, AU-1, Grumman F7F, F8F-1, Martin PBM-5
R-2800-18W, -57, -61Chance Vought F4U-4, Republic P-47N
R-2800-14W, -18W, -22W, -34WRepublic P-47N, Fairchild C-82, Northrop P-61
R-2800-55, -57, -61, -73, -77 
R-2800-18W,-57,-61Chance Vought F4U-4, Republic P-47N
R-2800-14W,-18W,-22W,-34WRepublic P-47N, Fairchild C-82, Northrop P-61
PR-58E5R-2800-18W, -42WChance Vought F4U-4B
R-2800-C, -42, -CB16 
R-2800-CA3, -CA15, -CA18, -CA18AMartin 202, 303, Convair 110, 240, XT-29
R-2800-CA15, -CA15A, -CA18, -CA18ADouglas DC-6
R-2800-95Douglas C-118
R-2800-97Convair T29A, B, VT-29
R-2800-44WNorth American AJ-1, AJ-2
R-2800-48Grumman AF-2
R-2800-50, -50ABell HSL-1, Sikorski S-56, HRS2
R-2800-CB3, -CB16, -CB17Martin 202A, 404
R-2800-CB17Douglas DC-6B, Howard Aero 500
R-2800-CB16Douglas DC-6A, DC-6B, Convair 340, 440
R-2800-52WDouglas C-118A, R6D, Convair R4Y-2
R-2800-99WChase C-123B, Convair C-131A, T-29C, D, VT-29, C-131A
R-2800-CA15Douglas DC-6
R-2800-103WConvair C-131B, D, E, Douglas B-26K
R-2800-52Convair R4Y-1
R-2800-CA18,-97Convair 240, Convair T-29, Brequet 763
R-2800-CB3, -CB6, -CB16, -52WMartin 202A, 404
R-2800-54Sikorski S-56
PR-58F1R-3350-8, -10, -12, -14 
PR-58P1 R-3350-57, - 83 Boeing B-29
PR-58P2R-3350-7 49C18BD1 Metering unitLockheed 749
R-3350-745C18EA3, -BA3, -739C18BA3Lockheed 049
R-3350-75, -749C18BD1Lockheed 649, 749, C-121A, B, WV-1
R-3350-749C18BD1Lockheed 749
PR-58P3R-3350-75, -749C18BDl Metering unitLockheed 749, C-121A, B, WV-1
R-3350-749C18BD1, -749C18BA3, -861C18CA2 
R-3350-956C18CA, 975C18CBLockheed 1049
R-3350-75, -749C18BD1Lockheed 749, C-121A, B, WV-1
PR-58Q2R-3350-24WALockheed P2V-2
R-3350-24, -35A 
PR-58R1Chrysler XI-2220 
PR-58S2R-3350-70 Metering unit 
R-3350-34, -93, -93ALockheed P2V-3W, R7V-1, WV-2, -3, C-121C, D, G
R-3350-972TC18DA1, 3Lockheed 1049B, C, D
R-3350-972TC18DA2, 4Douglas DC-7
R-3350-975C18CB1Lockheed 1049
R-3350-34, -42 Lockheed P2V-3W, R7V-1, WV-2, -3, C -121C, D, G
R-3350-972TC18DA1, 3Lockheed 1049B, C, E
R-3350-981TC18EAlCanadair CL-28
R-3350-34, -91, -93Lockheed C-121C, D, G
R-3350-988TC18EA1, 3Lockheed 1049G, 1649
R-3350-988TC18EA2Douglas DC-7B, C
R-3350-988TC18EA4Douglas DC-7B, C
R-3350-988TC18EA5Lockheed 1049G, 1649
R-3350-988TC18EA6Lockheed 1049B, C, E
R-3350-93Lockheed C-121D, G, EC-121, RC-121, TC-121
R-3350-972TC18DA1, -DA2, -DA3, -DA4Lockheed 1049B, C, E, Douglas DC-7
R-3350-34,-91Lockheed P2V-3W, R7V-1; WV-2, -3
R-3350-30W, -89A, -89B, -85Fairchild C-119F, G, H, R4Q-2, Lockheed P2V-4, -5, -6
R-3350-30WA, -36WLockheed P2V-4, -5, -6
PR-58U1 R-3350-26, -26WA, -26WB, -26WC, -26WD Lockheed P2V-3, Douglas AD-2, -3, -4, -5, -6, -7, A-1E, F, G, H
PR-62A1Avia (Lycoming) XH-2470 
PR-62B1Bristol Hercules XII 
PR-62C1Bristol Hercules VIII 
PR-62D1Bristol Hercules XII 
PR-64B2R-2800-E, 30WGrumman F8F-2
R-2800-32WChance Vought F4U-5
PR-74A1P & W X-1800-C (XH-2600) 
PR-78A1Bristol Centaurus 
PR-78A2Bristol Centaurus XI 
PR-78B1Chrysler XI-2220 
PR-88A1P & W XH-3130 
PR-100A3R-4360-4, -8Goodyear F2G-1, Martin XBTM-1, JRM-2, Douglas TB2D-1
R-4360-10, -13Boeing XF8B-1, Republic XP-72
PR-100B1R-4360-VSB11GFrench SE-2010
PR-100B2R-4360-VSB11GFrench SE-2010
R-4360-8, -14, -17Douglas TB2D-1, Curtiss XBTC-2, Northrop B-35
PR-100B3R-4360-35, -35ABoeing B-50, C-97, KC-97, Fairchild XC-119A, Douglas XC-124A
R-4360-VSB11G French SE-2010
R-4360-TSB3GBoeing 377
R-4360-27Douglas C-74, DC-7
R-4360-41, -41AConvair B-36B, D, E, RB-36, XC-99
R-4360-20WDouglas C-124A, Fairchild C-119, C-120, Martin XP4M-1, P4M-1
R-4360-35, -35A, -35BBoeing B-50, C-97, KC-97; Fairchild XC-119A, Douglas XC-124A
R-4360-35, -35A, -35C, -59, -59B, -65Boeing B-50, C-97, KC-97
R-4360-TSB5G, 6GBoeing 377
R-4360-B13French SE-2010
PR-100B4R-4360-13B, -25, -35, -TSB3G 
R-4360-20, -20WDouglas C-124A, Fairchild C-119, C-120, Martin XP4M-1, P4M-1
R-4360-41, -B13, 27 
R-4360-20WC,-20WDDouglas C-124A, B
R-4360-20, -20W, -20WAFairchild R4Q-1, C-119B, C,XC-120, C-120, Martin XP4M-1, P4M-1
R-4360-63A, -63BDouglas C-124C
PR-100D1Lycoming XR-7755-3 
PR-100E1R-4360-C, -53 
R-4360-53Convair B-36D, E, F, H, J
PR-100E3R-4360-53Convair B-36D, E, F, H, J