The Genesis of American **Air-Cooled Fixed Radials** by Kimble D. McCutcheon and Randy Huff

NEAM's Lawrance J-1

Charles Lanier Lawrance

Born 30 Sep 1882 Died 24 Jun 1950

Yale University Graduate

Studied Aeronautics in Paris around 1908

Designed Automobile and Aeronautical Engines

Returned to U.S. in 1914

Lawrance A-3

Lawrance A-3 Characteristics Bore=4.00", Stroke=6.00" Displacement = 150.8 in³, 75.4 in³/cylinder 28 hp @ 1,400 rpm, 14 hp/cylinder Weighed 148 lb, or 0.19 hp/lb Both Connecting Rods on One Crankpin Shook Badly Hairpin Valve Springs

Lawrance A-3

Breese Penguin

Lawrance B

Bore = 4.00" ?, Stroke = 6.00" ? Displacement = 226.2 in³ ?

Joint Lawrance/Navy Development

Lawrance L-2

Bore = 4.25", Stroke = 5.25" Displacement = 223.4 in³, 74.48 in³/cylinder

Compression Ratio = 5.14:1

50 hp @ 1,600 rpm, 16.7 hp/cylinder

Weighed 147.4 lb, 0.34 hp/lb

Lawrance L-2

Lawrance L-2 Crankcase

Lawrance L-2 Cylinders

Lawrance L-2 Crankshaft, etc.

Lawrance L-2 Valve Gear

Lawrance L-2 Internals

Lawrance L-3

60 hp @ 1,800 rpm, 20 hp/cylinder

Oil Sump Eliminated in Favor of Separate Oil Tank

Cylinders Refined

Helical Valve Springs

Longer Valve Stems

Sperry M-1

1st Lawrance R-1

Bore = 4.25", Stroke = 5.25" Displacement = 670.3 in³, 74.5 in³/cylinder

150 hp @ 1,600 rpm, 16.7 hp/cylinder

Weighed 428 lb, 0.35 hp/lb

Same Cylinders as L-3

Three Stromberg M-4 Carbs

Two Dixie Magnetos

1st Lawrance R-1

1st Lawrance R-1 Broken Parts

2nd R-1

Weighed 398 lb, 0.38 hp/lb

Almost a new engine in just under two months!

2nd R-1

Crankcases

Crankcases

2nd R-1 Cam and Master Rod

2nd R-1 Magneto Drive Housing

2nd R-1 Accessory Housing

2nd R-1 Induction

2nd R-1 Cylinder Failure

R-1 and J-1 Gearing

Lawrance J-1

Bore = 4.5", Stroke = 5.5" Displacement = 787.3 in³, 87.5 in³/cylinder

Compression Ratio = 5.17:1

200 hp @ 1,800 rpm, 22.2 hp/cylinder

Weighed 454.6 lb, 0.44 hp/lb

Lawrance J-1

R-1 and J-1 Cylinder Heads

Lawrance J-1

N.A.F TS-1

Huffer Engines

Choosing an Engine to Model

Choosing an Engine to Model

Choosing an Engine to Model

Searching for Engine Information

Searching for Engine Information

Clerget 9B Specifications

Start by Modeling the Crankcase

Start by Modeling the Crankcase

Model and Assemble Internal Components

Create the Valve Train

Model the Accessories

Calculate and Model Gears

Component Design and Evolution

Verify Component Details

Next Engine – Allison V-1710

